Oxidants from nicotinamide adenine dinucleotide phosphate oxidase are involved in triggering cell proliferation in the liver due to peroxisome proliferators.
نویسندگان
چکیده
It was shown that 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (Wy-14,643), a potent peroxisome proliferator, caused rapid oxidant-dependent activation of nuclear factor kappaB (NF-kappaB) in Kupffer cells in vivo and activated superoxide production by isolated Kupffer cells. Here, we tested the hypothesis that NADPH oxidase (NADPH OX) is the source of oxidants increased by Wy-14,643. Indeed, both activation of NF-kappaB and increases in cell proliferation due to a single dose of Wy-14,643 (100 mg/kg) were prevented completely when rats were pretreated with diphenyleneiodonium (1 mg/kg), an inhibitor of NADPH OX. p47phox is a critical subunit of NADPH OX; therefore, p47phox knockout mice were used to specifically address the hypothesis of NADPH OX involvement. In livers of wild-type mice, Wy-14,643 activated NF-kappaB, followed by an increase in mRNA for tumor necrosis factor a. Importantly, these changes did not occur in p47phox knockouts. Moreover, when Kupffer cells were treated with Wy-14,643 in vitro, superoxide production was increased in cells from wild-type but not p47phox-null mice. Finally, when mice were fed a Wy-14,643-containing (0.1%) diet for 7 days, the increase in liver weight and cell proliferation caused by Wy-14,643 in wild-type mice was blocked in p47phox-null mice. Combined, these results are consistent with the hypothesis that Wy-14,643 activates NADPH OX, which leads to NF-kappaB-mediated production of mitogens that causes hepatocellular proliferation characteristic of this class of nongenotoxic carcinogens.
منابع مشابه
WY-14,643 induced cell proliferation and oxidative stress in mouse liver are independent of NADPH oxidase.
Long-term exposure of rodents to peroxisome proliferators leads to increases in peroxisomes, hepatocellular proliferation, oxidative damage, suppressed apoptosis, and ultimately results in the development of hepatic adenomas and carcinomas. Peroxisome proliferators-activated receptor (PPAR)alpha was shown to be required for these pleiotropic responses; however, Kupffer cells, resident liver mac...
متن کاملLiver Due to Peroxisome Proliferators Oxidase Are Involved in Triggering Cell Proliferation in the Oxidants from Nicotinamide Adenine Dinucleotide Phosphate
It was shown that 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (Wy-14,643), a potent peroxisome proliferator, caused rapid oxidantdependent activation of nuclear factor kB (NF-kB) in Kupffer cells in vivo and activated superoxide production by isolated Kupffer cells. Here, we tested the hypothesis that NADPH oxidase (NADPH OX) is the source of oxidants increased by Wy-14,643. Indeed,...
متن کاملIncreased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity.
Insulin resistance is a key pathophysiological feature of metabolic syndrome. However, the initial events triggering the development of insulin resistance and its causal relations with dysregulation of glucose and fatty acids metabolism remain unclear. We investigated biological pathways that have the potential to induce insulin resistance in mice fed a high-fat diet (HFD). We demonstrate that ...
متن کاملCytochrome P450 CYP2E1, but not nicotinamide adenine dinucleotide phosphate oxidase, is required for ethanol-induced oxidative DNA damage in rodent liver.
The occurrence of malignant tumors of the upper gastrointestinal tract and liver is, based largely on epidemiological evidence, causally related to the consumption of ethanol. It is widely recognized that oxidants play a key role in alcohol-induced liver injury; however, it is unclear how oxidants may be involved in DNA damage. We asked whether nicotinamide adenine dinucleotide phosphate oxidas...
متن کاملNovel role of oxidants in the molecular mechanism of action of peroxisome proliferators.
Peroxisome proliferators are nongenotoxic rodent carcinogens that act as tumor promoters by increasing cell proliferation; however, their precise mechanism of action is not well understood. Oxidative DNA damage caused by leakage of hydrogen peroxide (H2O2) from peroxisomes was hypothesized initially as the mechanism by which these compounds cause liver tumors. It seems unlikely that oxidants of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 17 شماره
صفحات -
تاریخ انتشار 2000